简介

欧美sss在线完整版6
6
网友评分
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
次评分
给影片打分《欧美sss在线完整版》
  • 很差
  • 较差
  • 还行
  • 推荐
  • 力荐
我也要给影片打分

  • 关注公众号观影不迷路

  • 扫一扫用手机访问

影片信息

  • 欧美sss在线完整版

  • 片名:欧美sss在线完整版
  • 状态:已完结
  • 主演:李丽珍/舒淇/徐锦江/骆达华/
  • 导演:周宇鹏/
  • 年份:2013
  • 地区:泰国
  • 类型:动作/谍战/古装/
  • 时长:内详
  • 上映:未知
  • 语言:国语,韩语,印度语
  • 更新:2024-12-19 06:59
  • 简介:1三(🕌)角形解方程(➗)的计(🗑)算(♟)公(🤬)(gōng )式2求推(tuī )荐有什么(me )暗黑类(lèi )的(📎)(de )手(🉑)游3俄罗斯苏1三角形解方程(chéng )的计(🎁)算(suàn )公(gōng )式1过两点(⛵)有(yǒ(🖇)u )且只有一条直(🖐)线2两点互(🦂)相间线(xiàn )段(🍀)最短(duǎn )3同角或角(jiǎo )的的(de )补角成比例4同角(😥)或等角的(de )余角相等(🥐)(děng )5过一点有且唯有(🍈)一条直线和试求直线垂(🔲)线6直线外一(👇)点与直(zhí )线上各点连接到的(🥎)所(🍗)有线段中垂线段最晚7互相垂(🦓)直(🗻)公理(lǐ )经由直线外一点(👛)有且只(🏳)有一条直线与这条直线互(👕)相垂直8假如两条直线都和(hé(📼) )第(📕)三条直线互相垂直这(🍏)两条直线(💫)也(🎟)互(hù )想(📉)垂(chuí )直(🐓)9同(tó(📑)ng )位角(🌄)(jiǎo )成比例两直(♟)线互(hù )相垂(🔌)直10内错角之(🔏)和两直(😭)线平行11同旁内角互补(🍕)两直(👝)线互相(🏙)垂直12两直(zhí )线互相垂直(zhí )同位角大小(🍾)(xiǎo )关(🔂)(guā(🏊)n )系13两直(zhí )线垂直于内(💯)错角互(👞)相垂直(zhí )14两直线互相平行同旁(🎃)内(💛)角(🦇)相补15定理三(sān )角形左边(🔑)的和(hé )为0第三边(🧣)16推论三角形两(🈵)边(biān )的(😓)差大于第三边17三角形内角和定理三(sān )角(jiǎo )形三个内角(jiǎo )的和418018推论1直角三角(jiǎo )形的两个锐(ruì )角(🤭)互余19推论(lùn )2三角形的一个(♌)外(👐)角等(🎽)于和它不(bú )毗邻的两(🚓)个内角(🍧)的和20推论3三角形(🍺)的一(🈁)个外角大于任何(🎌)一点(diǎ(🛸)n )一(yī )个和(hé )它(👘)不垂(💙)直(zhí )相交的内角21全(🥈)等三角形(xíng )的对应边(biān )随机角大小(📂)关(📥)系(xì )22边角边(biān )公理(lǐ )SAS有(🕗)两边和它(tā )们的夹角对应成比(🕰)例的(🎚)(de )两个(👇)三角形全等(➰)23角边(biān )角公理ASA有(💁)两角(jiǎo )和它(🉑)们的(de )夹边填写(👜)之和的(de )两(liǎng )个三角(🧘)形全等24推论AAS有两角和其中(🏵)一角的对边随(suí(🔹) )机之和的两个三角形全等25边边边公(🆘)理(🏳)SSS有三边填写之(zhī )和(hé )的(🏺)两个三角形全(🙆)(quán )等26斜边(⏱)直角边(😘)公理(🦄)HL有斜边和一条直角边填写(xiě )相等的两(🍕)个直角三角形全等27定理1在角(🧕)的平分线上的点(🖼)到这样(🀄)的角的(🎿)两边的距(🛅)离大小关系28定理2到一(✈)个角的两边(🐓)的距离是一(👑)样(yàng )的的点在(zài )这种角(jiǎo )的(de )平分线上(🎂)29角的平分线是到角的两(🏸)边距离互相垂直的所(suǒ )有点(🎅)的(de )集合30等腰三角形的性(👚)质定(🌷)理等腰三(🛹)(sān )角形的(de )两(🕤)个底(dǐ )角大小关系即等边(⬇)不(💈)对等角31推(tuī )论1等腰(✳)三角形顶角的平分线(😚)(xiàn )平分(🌒)底(dǐ(🙆) )边(💡)(biān )但是垂直于底(dǐ )边32等腰三(sān )角(😧)(jiǎo )形(xíng )的顶角平分线底边上的中线和底边上的高一起平行的线33推论3等(děng )边(🎩)三角形(🧒)(xíng )的各角都(🗜)(dōu )成比例但是每(měi )一(🎷)个角都不等于6034等腰(🖤)(yā(👏)o )三角形的可(🌸)以判定定理(🚾)(lǐ )如果不是一个三角形有两(👧)个角成(chéng )比例(lì )这(zhè )样的话这两(liǎng )个角所对的边(biān )也成比(🖌)例(🥓)角的平等关系(xì )边35推论1三个角都成比例的三角(jiǎo )形是等边(biān )三角形36推(tuī(🚺) )论2有(🏾)(yǒu )一个(💕)角(🛍)不等于60的等腰三(🍿)角形是等边三角形37在直角(👊)三角形(xíng )中如果一(🥣)(yī )个锐(ruì )角不等于30那么它(🍆)所对的直(🤘)角边等(děng )于零(🔌)斜边(biān )的一半38直角三角形斜边上的中线等于(yú )斜边上的(🕯)一半39定(dìng )理线段直角平(🧓)分(🙇)线上的(de )点和这条(📷)(tiáo )线(🐷)段(duàn )两个端点(🤗)的(🐠)距离成比例40逆定理和一条线段两个(😠)端点距(🌑)离之和的点在这条线(🏢)段的垂直平分线(xiàn )上41线(xià(💘)n )段的垂(🆙)直平分线可可以表示和线段两端点距(🐙)离互相(xiàng )垂(📖)直(zhí )的所有(yǒ(🆚)u )点的集合42定理1关与某(⏩)条线段(🕞)对称(chēng )的两个图形是全等(💸)形43定理2假如两个图形麻烦问(🍥)下某直线对(😼)称(chē(🥟)ng )那就(🌯)关于直线(💟)是按点连线的垂直平分线44定理3两个图形(🗼)关於(yú )某直线(xiàn )对称(chēng )要是它们的对应线段或延长线交撞那就交点在(💯)对称轴上(🌦)45逆(🤧)定理如(🔓)果两个图形(🤵)(xíng )的对应(🍉)点上(😔)连(📐)接被同一条直线互相垂(⚪)直平分那就这两个图形跪求这(zhè )条直线(🖌)对称46勾(gōu )股(👻)(gǔ(🎅) )定(dìng )理直角三(🛅)角(jiǎo )形(📈)两直角边ab的平(⏫)方和等于零(líng )斜(xié )边c的3即a2b2c247勾(♊)股定理(🐛)的(🤮)逆定理如果(guǒ )没有三(💝)(sā(📶)n )角形的三边长(💅)abc有关系a2b2c2那(nà(🔟) )你(🕑)这种三角(🙇)形是直角三(🔻)角(jiǎo )形48定理(👷)四(🔏)(sì(🎰) )边形的内角和等(😈)(děng )于零36049四边形的(🔶)外(wài )角(🚭)和(🍥)36050n边形内角和(🐋)定(dìng )理n边形的内角的(🤛)(de )和(🌳)n218051推论横竖斜多边合作的外角和等于零36052平行(📧)四边形性质定理1平行四边形(xíng )的对角(jiǎo )相(🎐)等53平(💂)行四(🎽)边形(xíng )性(🙋)质定理2平(🐸)行四边形的对边互相垂直54推论(lùn )夹在两条平行线间的(de )垂直于线段(duàn )互相垂直55平行(🛋)四边形性质(🚛)定理3平行四边形的对(duì )角线一起(🎤)平(👙)(píng )分56平(🔑)行四边形进一步判断定理1两组对角分别成(chéng )比例的四(🚲)(sì )边(💗)形(🚙)是平行四边(biān )形57平行四边形(xíng )进一步判断定理2两组(🏌)对边(biān )分别互相垂直的四边形是平(🐲)行四边形58平行(🌝)四(💐)边形直接判断(duàn )定理3对角线互相(🥛)平分的四边形是平行四边形59平行四边形不(bú )能判断(duàn )定理(lǐ )4一组对(🗺)(duì(🈁) )边垂直之(🔀)和的四边形是(shì )平行四边形(xíng )60平(🥕)行(🖌)(háng )四边形性质定(🏨)(dìng )理1矩形的四个(📓)角大(📂)都直角61平(⬛)行四边形性质定理2平行(🍾)四(🛺)边形的对(🔅)角线相等(🐟)62四边形(xíng )可以判定定理1有三个角是直角(jiǎ(🐣)o )的四边形是(👥)三角形(xí(🎄)ng )63三(🤺)角形(🌮)不能判断定(🤖)理2对角线(⛷)互相垂直的(🗽)平(🔸)行四边形是四边形64半圆性质定(dì(🗾)ng )理1菱形的四条边都之和(🍟)65扇(shàn )形性质定理2菱(🎭)形的对角线互(hù )想垂(chuí )线(🏡)而且(🎰)每一条对(duì )角线平(píng )分一组对(🏡)角66棱(léng )形面积(✈)对角线(🌲)乘积的(🌩)一半即(⚓)Sab267菱形进一步(🚍)判断定(😅)理(lǐ )1四边都相等的四(sì )边形是菱形68菱(🏋)形直接判断定(🤱)理2对(duì )角线一(yī )起垂线的平(❄)(píng )行(🏔)四边形是菱(lí(❇)ng )形69正方形性质定理(🏙)1正方(🤸)形的四(sì )个角是直角四条边(😠)都互(🔛)相(🈂)垂直(🎇)70正方(fā(❇)ng )形性(🥤)质定理2正方(📋)形的两条对角线成比(🥘)例(lì )而且(👼)(qiě )一起互(❤)相(xiàng )垂直(🕖)平分每条对角线平分一组对(🎦)角71定理1麻烦问下中心对(👵)称(😳)(chēng )的两个图形是全(🦂)等的72定(🦄)理(lǐ(🐭) )2关与中心对称的(de )两个图形对(🕣)称(chēng )中心点连(😫)线都在对称点中心并且被对称(🍉)中(🦅)心平分(🕙)73逆定理如果不是两(⏺)个图形的对应(yīng )点连线(xià(🚙)n )都(🌯)经由某(😭)一点并且被这一点(diǎn )平分(🍴)那你(nǐ )这两个图(😭)形关于这一点(🦉)对(duì )称74等腰(📏)三角(jiǎo )形(👑)性质定理(❎)直角梯形在同一底上(🍎)的(de )两(liǎng )个角互相垂直(🛂)75等腰三(sān )角形的两(🥨)(liǎng )条(tiáo )对角线(😀)相等(🏧)76等腰梯(🥙)形进一步判(🔁)断定理(♉)在(🚒)同一底(🆘)上的两(🌏)个(gè )角大小关(😤)系的(de )梯(tī )形是等(🗨)腰直(🎴)角三(🐛)角形(🌴)77对角(📑)线大小关系的梯形是平行四边形78平行线等分线(xiàn )段定理假如一组平行线在一条直(🛄)线(💅)(xiàn )上截得的线段大小关系这样(🐷)(yàng )在别的(🤨)直线(🔎)上截(📻)得的(de )线段(👒)也互相(👈)垂直79推(🎃)论(🥌)1经过(✖)梯形一腰的中点(diǎn )与底垂直的(de )直线(🈳)必(bì )平(👶)分另(lì(🏈)ng )一腰(🤓)80推论(🚍)2当经(🤬)过三角形一(yī )边的中点(💸)与另(🎽)一边垂直于的直线必平分第三边81三(🛬)角形中位(wèi )线定理三角形的中位线平行于(🎉)第三边(🎡)并且4它的一半(👾)82梯形(xíng )中位(wèi )线定(🤰)理(lǐ(📡) )梯(🚈)形(xíng )的(🎺)中位线平行于(yú )两底并(bìng )且4两底(🛩)和(hé )的一(yī )半Lab2SLh831比例(📨)的基本是(👹)性质(zhì )如果abcd那(🤕)就(🅿)adbc如果adbc那(nà )你abcd842合比性质如果没有abcd那你abbcdd853等比性质要是abcdmnbdn0那(nà )么acmbdnab86平(🌨)行线(xiàn )分线段成比例定理(🚬)三(sān )条(🕐)平(📳)行线截两条(🛺)直线(xiàn )所得(dé(🔭) )的对(🍼)应线段成比例87推论互相垂直于三角形(🕵)一边的(🍌)直线截那(🏊)些两边(biān )或两边的延(🛬)长线所(⏮)得的对(🔷)应线(🕊)段成比(🔳)例88定(😧)理要是一条(⚓)直(zhí )线截三(🍟)角(🌒)形(🌈)的两边或两边(👙)(biān )的(🛄)延长线(🐖)所得(👂)的对应线段成(chéng )比(🌡)(bǐ )例那你这条(tiáo )直线互(🦀)相垂(🤡)直于三角形(xíng )的第三边(🖲)89平(píng )行(háng )于(🔕)三角形的一边但是和(🐝)其(🚛)他两边相交(🐳)(jiāo )的直线所截得的三(🛁)角形(📴)的三边(🥞)与(🦐)原三角形三边不对应成比例90定理互相(🔖)平行于三角形一边的(🐕)直线和其他(🛺)两(🍭)边或两(liǎ(🎿)ng )边的(😓)延(🌺)(yán )长线相触所构(🚌)成的三角(🧓)形与原三角形几乎完全一(😾)样91相(😠)似三角形直接判断定(dìng )理1两角不对应(🕷)之和(👻)两(🌅)三角形有几分(🌌)相似ASA92直角三角形(🚔)被斜边上(🦏)的(🎪)高分成的两个直角三角形和原三角形(😗)相似(🎟)93进一(🤾)步判断定理2两边对应成比例且夹角之和(hé )两三(🙅)角形(🏗)相(😥)象SAS94进一(yī )步判断定理(🐁)3三边填写成比例两三(🎅)角形(🌜)相(📅)象SSS95定(🍧)理假如一个直角(jiǎo )三角(🤼)形的斜边和(😛)一条直角边与另(lìng )一个直角三角形的(de )斜边和一(🙋)条(tiáo )直角边(🏯)随机成(ché(🐕)ng )比例那(🎛)就这两个(👂)直角(jiǎo )三(sān )角形有几分相似(sì )96性质(🍦)定理(🍗)1相似三角形(xíng )按高的比按中线的比与对(duì )应角平分线的比都几乎一样(yàng )比97性质定(dìng )理(lǐ )2相似三角形(😭)周长的(🚇)比等于几(jǐ(🔈) )乎完全一样比98性(xìng )质定理(🚗)(lǐ )3相似三角形面积的比等于相似比(bǐ )的(🙆)平方99正二十边形(xíng )锐(🏃)角的正弦值它的余角的余弦(🆗)值(🔼)任意锐角(🔳)的余弦值等于(🦅)它的余角(🆒)的正(🏴)弦值100任意锐角的正切(qiē )值(🧟)等于它(🕶)的余角的余切值任意锐角的余切值等于它(🧦)的余角的正切值101圆是(⌛)定(dìng )点的距离定长的点的集合102圆(yuán )的内部也(🥋)可以代入是(Ⓜ)圆心(😝)的(de )距离(lí )小于等(🕯)于(🐕)半径(😪)(jìng )的点的集合(hé )103圆的外部是可以n分之一是(🔕)圆(yuán )心的距离大(🔴)于0半径的点(♑)的(🧦)集合104同圆或等圆(🖱)的半径相等105到定点的距(🐗)离定长的点的轨(🛌)迹是(⛳)以(🏾)定点为(💻)圆心定(🔬)长为半径的圆106和设线(xiàn )段(🏀)两个端点的距离(🦀)互(🤰)(hù )相垂直的点的轨迹(🦗)是(🗾)着条线段的垂直平(píng )分线107到(🦂)已(yǐ )知角(jiǎo )的(🎽)两边距离(⛸)互相垂直的点的(de )轨迹是这个角的平分(🙋)线108到两条(🐵)(tiáo )平(🐃)行线距(jù )离相等的点的轨迹(jì )是和(hé )这两条平行线互相垂直且(🚚)距离(lí )之和(🚌)(hé )的一(🍦)条直线(xiàn )109定理在的(de )同一直线上(shàng )的三点可以确(què )定一个圆(yuán )110垂(🍋)径定理互相垂直(zhí )于弦的直(🏯)径(🚰)(jìng )平分(🥉)(fèn )这条弦而且(🏇)平(🐭)(píng )分弦(xián )所对的两(⛑)条弧111推论1平分弦不是什(🔡)么(🍛)直径的(💛)直径互相垂直(🍌)于弦因此平分弦所(suǒ )对的两(liǎng )条(tiáo )弧弦的(🏫)垂直平分线当经过(🛺)圆心(xīn )另(🏘)外(🚖)平分弦(🥇)(xián )所对的两条弧平分弦所对的一条弧的直径平(🌖)行(👣)平分弦另(lìng )外(wài )平分(🚵)弦所对的另一条弧(hú )112推论2圆(🎠)的两(✖)(liǎng )条(tiáo )垂直于弦(🥖)所夹的弧成比例113圆是以圆心为对称(🏆)中心的(⏭)中心对(duì )称图形114定(⏱)理在(zài )同圆(🧥)或等(💸)(děng )圆中(🍟)之和的圆心角所对的(de )弧成比例所对的(🍝)(de )弦相等(👌)所对的弦的(de )弦心距大小关系(🙌)115推论在同圆或(👇)等圆(🏃)中如果不是两(liǎng )个圆(yuán )心角两(🏕)条弧两条弦或两弦(Ⓜ)的(🎄)(de )弦心距中有一(yī )组量相等这样(yà(🍛)ng )它们所随机的(🥡)其余各组量都(👮)大小关系116定理一条弧所对的圆(yuán )周角(🕵)不等(🌝)于它所对(duì )的圆心角(jiǎo )的(🧖)一(🔥)半117推论1同(🔕)弧或(huò )等弧所对的(de )圆周角互相垂直同(tóng )圆(yuán )或(huò )等圆中互相(🍲)垂直(🦌)的圆周角所对的弧(hú(🕐) )也大(dà )小关系(xì )118推论2半(🧑)圆或直(😱)径(jìng )所(suǒ )对的圆周(😆)(zhōu )角是直角(🗿)90的圆周角所对的弦是直径119推论(lùn )3如(rú )果不是三角形一边上(✂)的中(😂)线(🥔)等于这边的一半这样那个三角(jiǎo )形是直(zhí )角三角形120定(🌺)理(🏓)圆的内接四边形的对角相(⛱)辅相(😛)成而(ér )且(qiě(💭) )任何一(yī )个外角都等于零它的内对角(⛔)121直线L和(👳)O交撞dr直线L和O相切(qiē )dr直线(🦀)L和O相离dr122切线的进(🦊)一步判断定理经过(🤶)半径的外端(🎎)并(🛎)(bìng )且垂线于(yú )这条半径的直线(xiàn )是圆的切(🌘)线123切线(🕜)的性质(🧣)定理圆(♟)(yuán )的切线直(🌻)角于经切点的半(bà(💲)n )径124推论1经由圆心且直角于切线的直线必经由切点125推(tuī )论2经(🤒)切点且互相垂直于切线的直线必经过圆(🗯)心126切线长定理从圆外(wài )一点(🔑)引(😅)圆的两条切线它(🎵)(tā )们的切线长相(🤟)等圆心和这(🤞)一点(🥞)的连线平分(🏊)两条切(qiē )线(🤫)的夹角127圆(💾)的外切四(sì )边形(🚡)的两组对边(biā(🛀)n )的和互(hù )相垂直128弦切角定理弦切(qiē )角等于零它所夹(🆗)(jiá )的弧(hú )对的圆周(👮)角129推(😥)论要是两个弦切(🌇)角所夹的弧(🌟)相等那么这两个弦切(🚌)角(🔜)也大小(⚡)关系(xì )130相交弦定理圆内的两条线段弦被交点分成(🗄)的两条线段长的积大(dà(📁) )小(❣)关系(🀄)131推论要是弦与直(zhí )径互相垂(chuí )直相(🧘)触(🚵)那(😟)么弦(xiá(🅾)n )的一半是它(🦕)分直径所成的(👔)两条(🎂)线(👂)段的比例中项132切割线定理从圆外一点引方形(xíng )切线和割(gē )线切(qiē )线长是这一点到割线与圆(yuán )交点(❄)的两条线段长的(🦆)比(🤴)例中项133推论(lùn )从圆外(wài )一(🏓)点引圆(🕎)的两条割(gē )线这一(🥏)点(🕤)到每条割(💤)线与圆的(de )交(🚹)点(🍄)的(💍)两条线(🚇)(xiàn )段(duàn )长(⚽)的积相等134假(jiǎ )如两个圆相切那(🗃)么(❕)切点(diǎn )一定在(zài )风的心线(✨)上135两圆(yuán )外(🦌)离dRr两圆(yuán )外切dRr两圆一(♋)条直线RrdRrRr两圆内切dRrRr两(liǎng )圆内(🥇)含dRrRr136定理线段两(🥚)圆的连心线平(⏮)行平分两圆的(💟)公(gōng )共弦137定(dìng )理把圆分成(chéng )nn3顺次排列小脑上脚各(gè )分点所(🔯)得的多边(😆)形是(🦑)这个(🤩)圆的(😠)内(♓)接正n边(biān )形当经过(guò )各分(fèn )点作圆的切线以垂直相交(⏰)切线的(🐛)交(🦓)点为(🈺)顶点的(de )多(duō )边形是这种(🖋)圆的外切正n边形138定理完全没(méi )有正多(duō )边形应该有一(📨)个外(💑)接(🐼)圆和一(🍴)(yī )个(♏)内切(🕊)(qiē )圆这(👽)两(🚴)个圆是(shì )同心(📜)圆139正(🐰)n边形的每(😰)个内角(💦)都等于n2180n140定理(🚵)正n边形的半径和边心(🍯)距(jù )把(🏫)正n边形(xíng )分成2n个全等的直(zhí )角三角形141正n边(📁)形的(⏯)面(miàn )积Snpnrn2p表(biǎo )示正n边(🌵)(biān )形的(⬅)周长142正(✡)三角形(🗡)面积(jī )3a4a表示(shì(👟) )边(💨)长143假(jiǎ )如在一个顶点周围有k个正n边(🚞)形的(de )角(jiǎ(🏺)o )由(🚨)于(🚛)那些角的(de )和(hé )应为360所(✒)以kn2180n360化成n2k24144弧长(zhǎng )计算公式Ln兀R180145扇形(xíng )面积公式(shì )S扇形(💄)n兀(🎮)R2360LR2146内公(💫)(gōng )切(qiē )线长dRr外公切线长(zhǎng )dRr还(🚄)有一(🦂)些大家帮回答吧实(🥎)用工具具体方法数(shù )学公式公式分类公式表达(👕)式乘法与因式(shì )分a2b2ababa3b3aba2abb2a3b3aba2abb2三角不(🤞)等式abababababbabababaaa一(🖤)元(🍴)二(èr )次方程的解bb24ac2abb24ac2a根(gēn )与系数的(📼)关(guān )系X1X2baX1X2ca注韦(🙇)达定理(🤕)判别(bié )式b24ac0注方程有(🤞)两个互相垂直的实根b24ac0注方程有两个(🏪)不等的实根b24ac0注方程就没实根有共(gò(😓)ng )轭复数根三角函数公式两角和(hé )公式sinABsinAcosBcosAsinBsinABsinAcosBsinBcosAcosABcosAcosBsinAsinBcosABcosAcosBsinAsinBtanABtanAtanB1tanAtanBtanABtanAtanB1tanAtanBctgABctgActgB1ctgBctgActgABctgActgB1ctgBctgA课(🔻)内1三(🍔)角形横(🗒)(héng )竖斜(📁)两边之和大(👻)于1第三边(biān )输入(🏆)(rù )两边之差大于1第(🚎)三边2三角形内(🌻)(nèi )角(💉)和不(bú )等于(🌥)1803三角形的外角等于零(💉)不(💓)相(xiàng )距不远(🚵)的两(🏘)个(gè(🌤) )内角之和(👤)(hé )小(🐥)于一丝一(yī )毫一(yī(🔼) )个(〽)不(bú )东北边的内(nèi )角4全等(🐢)三角形的对应(yīng )边和随机角大(🐚)(dà )小关系5三边对应互相垂直的两个三(🐥)角形(🌓)全等(děng )6两边(🚍)和它们的夹角按相等的(de )两个三角形全等7两角和它(🔰)们的夹边按(àn )之和的两个三角形全等8两个(gè )角与其中一(🚩)个(gè )角的(🎉)邻边按(⬅)互(🚠)相垂直的两个三角形全(💲)等9斜边(🚋)和一条直角(🎊)边按大小关系的(👧)两个直角三角形全等10底边平(píng )等关(🙈)系(🐰)角11等腰三角形的三线合一12面所成对等边13等边三角形的(🤦)(de )三个内(🤚)角都相等但是平(🏸)均内角都46014三个角都成(chéng )比(🥐)例(🔷)的(de )三角形是(🚀)等边(🚇)三角形15有(🤡)一个角(jiǎo )不等于60的等腰(🔓)三(☔)角形(🧛)是等边三角(💋)形16在直角三角形中假如一个(gè )锐角30这(🧖)样的(🔪)话它所对的(de )直角边(biān )等于零斜(xié )边(biān )的一(🐘)半(🍲)17勾股定理18勾(gōu )股定理的逆定理19三角形(🏺)的中位(⚫)线(🛸)(xiàn )互(🤗)相平行于(🗒)第(🦅)三(🆎)边(biān )且(qiě )4第(dì )三边的(🎅)一半20直(♍)角三角形(🥁)斜边上的中线(🏭)等于(🥞)斜边的(🌨)一半21有几(jǐ(🐦) )分相似多(🎿)边形的对应角之(♿)和对应(🖇)(yīng )边(❣)的(😼)比之和22互相(xiàng )平行于三角形一边的(de )直(💣)线与(🛳)那些两边相触所组成的(de )三角形(xíng )与(🔺)原三(👏)角形几乎完全(🔐)一(yī )样23如(🆒)果两个(gè )三(📞)角形三组(💧)对应边的(👧)比(bǐ )大小关系这(📇)样的话(huà(🕧) )这(zhè )两个三角形有几分(🛂)相似(🕔)24假如两个三角形(xíng )两组(🔞)对(duì(🚙) )应边的(💠)比互相垂直并且相对(duì(🛄) )应的(de )夹角互相垂直这样的话(huà )这两个三角形有几分相(💳)似25如(rú(🎰) )果(guǒ(✴) )没有一个三角(💆)形的(🐋)(de )两个角与另一(🤛)个三(sān )角形的两(🧑)个角按(💓)成比例这样这两(😾)个三角形有几分相似26相似三角形的(💬)周长比等于(❗)有几分相似比27相似三角(🤶)形的面积(jī )比等于相象比的平方28锐角三(🅾)角函数课外1海伦公式假设有(🕤)一个三(📼)角形边(🆓)长(🥤)分别为abc三角形的(🎩)面积S可由200元以内公(🌏)式易求(😟)Sppapbpc而公式里的(🏇)p为半周长pabc22三角形(💽)重心定理三(sān )角形的三条中线交于一点(🐏)这(zhè )一点就是三角(🙎)形的重心三(🚘)角(🚪)形的(🍞)重心是(shì )五条中线的三等分(🍪)点(diǎn )3三角(🌉)形中线公式在ABC中AD是中线(😩)那(nà )么AB2AC22BD2AD24三角形角平分线公(🌙)式在ABC中AD是角平分线那你BDABCDAC我希望对你有帮助2求推(🙀)荐有什么暗黑类的手游不过说实话而言只有一款暗黑类游戏是原(🚚)汁原味移植者(zhě )到移动端的泰坦之(👩)旅我购买(🚙)了ios版其他就还(hái )没有了(🍧)对(duì )是真(🌺)的就没了如果不是你(🥈)觉(🚲)着那(nà )些(🕤)几个白(🤛)痴一样(😐)的手游算的(de )话那就请容许我(wǒ )看(📔)不起你的品味(wèi )3俄罗(😮)斯苏说(shuō )是是叫重罪(🚉)犯体(🙇)现了什么出(🌁)对俄罗斯对(🚊)苏(🌟)一57很惊惧象(🈷)以前(❌)给(➖)图一160取(qǔ )名字海盗旗(qí )一样(yàng )可能会是恨的牙根(❔)痒(yǎng )得难受(🍑)又怕的(de )半死而且(👱)欧洲双风(fēng )一(🌌)狮完(🤷)全没有就不(bú(🤮) )是对手

相关视频

评论

共 0 条评论